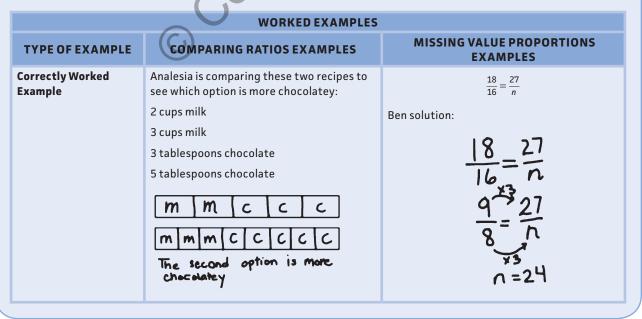


Thank you

FOR YOUR INTEREST IN CORWIN

Please enjoy this complimentary excerpt from Figuring Out Fluency – Operations With Rational Numbers and Algebraic Equations.

LEARN MORE about this title!


ACTIVITY 5.7 WORKED EXAMPLES FOR RATIOS AND PROPORTIONS

As described in Part 1, correctly worked examples and partially solved worked examples help students make sense of a strategy, while incorrectly worked examples help students notice and avoid common errors. Common errors and challenges include:

- Using additive reasoning when the situation requires multiplicative reasoning. For example, when comparing \$6 for 10 pens or \$8 for 12 pens, thinking the ratios are the same because of the common difference (Canada et al., 2008; Dougherty et al., 2016).
- Understanding the whole in a part-to-part ratio. For example, if the ratio is 4 parts sugar to 1 part water, understanding that the whole is 5 parts (I, Martinez, & Dougherty, 2018).
- Not attending to covariation. For example, in looking at a ratio table, students may only look at the pattern from one column (or row) to the next without thinking about how two quantities vary together (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Dougherty et al., 2016).

Questions to support student thinking for each type include:

CORRECTLY WORKED EXAMPLES	PARTIALLY WORKED EXAMPLES	INCORRECTLY WORKED EXAMPLES
What did do?	Why did start the problem	What did do?
Why does it work?	this way?	What mistake does make?
Is this a good method for this problem?	What does need to do to finish the problem?	How can this mistake be fixed?

Worked examples are found throughout this module. A sampling of additional ideas is provided in the following table.

Figuring Out Fluency—Operations With Real Numbers and Algebraic Expressions: A Classroom Companion by Jennifer M. Bay-Williams, John J. SanGiovanni, C. David Walters, and Sherri Martinie. Copyright © 2023 by Corwin Press, Inc. All rights reserved.

⁽Continued)

```
(Continued)
```

WORKED EXAMPLES		
TYPE OF EXAMPLE	COMPARING RATIOS EXAMPLES	MISSING VALUE PROPORTIONS EXAMPLES
Partially Worked Example	Jaena is working to figure out which is the better deal, 8 markers for \$1.50 or 12 markers for \$2.00: $8 \frac{24}{1.5} \frac{24}{4.50}$	Problem: Kiwi are on sale, 5 for \$2.00. What is the cost to buy 12 kiwi? Sam sets up an equation: $\gamma = \frac{5}{2} \chi$
Incorrectly Worked Example	Patrick was comparing these prices, \$6 for 10 pens or \$8 for 12: Both prices are the same. For both you get 4 more pens than the cost.	Problem: In a classic cake recipe, the ratio of eggs to flour is 4:3. With $4\frac{1}{2}$ cups of flour, how many eggs are needed? $\frac{4}{3} = \frac{4.5}{x}$ $4x = 13.5$ $x = 3.375$
	Couvili	
	G	

Figuring Out Fluency—Operations With Real Numbers and Algebraic Expressions: A Classroom Companion by Jennifer M. Bay-Williams, John J. SanGiovanni, C. David Walters, and Sherri Martinie. Copyright © 2023 by Corwin Press, Inc. All rights reserved.