FIGURING OUT

 MULTIPLICATION \& DIVISION With Whole Numbers

Thank you

FOR YOUR INTEREST IN CORWIN

Please enjoy this complimentary excerpt from Figuring Out Fluency - Multiplication and Division With Whole Numbers, by John J. SanGiovanni, Jennifer M. BayWilliams and Rosalba Serrano.

LEARN MORE about this title!

WORKED EXAMPLES

Worked examples are problems that have been solved. Correctly worked examples can help students make sense of a strategy and incorrectly worked examples attend to common errors.
Partial Quotients, like Think Multiplication, can lead to the following challenges or errors:

1. The student records partial products to start, but the partials go beyond what is needed for the problem at hand.

- $1,834 \div 22$: notes $22 \times 10=220,22 \times 100=2,200$, and $22 \times 1,000=22,000$.

2. The student continues to use $\times 10$ facts, without looking for other possible partials.

- $1,834 \div 22: 22 \times 10(220)$ is subtracted repeatedly, rather than noticing and using 22×20 (440) or 22×30 (660).

3. There is confusion about what "work" is collected to determine the answer.

- Records a list of partials down the right side of the problem but does not add them together.

4. The student makes subtraction errors, in particular not regrouping when it is necessary.

- Subtracts $2-5$ and records 3.

Partial quotients are often obtained by considering multiples of the divisor ($\times 10, \times 100$, etc.), but there are other options, which can be highlighted through worked examples. Comparing different worked examples can help students gain insights into efficient use of the Partial Quotients strategy. The prompts from Activity 6.5 can be used for collecting worked examples. Throughout the module are various worked examples that you can use as fictional worked examples. A sampling of additional ideas is provided in the following table.

SAMPLE WORKED EXAMPLES FOR PARTIAL QUOTIENTS

Correctly Worked Example

(make sense of the strategy)
What did \qquad do?

Why does it work?
Is this a good method for this problem?

Partially Worked Example
(implement the strategy

(implement the strategy accurately)

Why did \qquad start the
problem this way?
What does \qquad need to do to finish the problem?

Incorrectly Worked Example

(highlight common errors)
What did \qquad do?

What mistake does \qquad make?
How can this mistake be fixed?

Thomas's work for $1,876 \div 14$:
$14 \times 10=140$
$14 \times 100=1,400$
$\begin{aligned} & 1 4 \longdiv { 1 , 8 7 6 } \\ & \frac{1,400}{476}\end{aligned} 14 \times 100$

$\begin{array}{r}280 \\ -26 \\ \hline-2814 \times 20\end{array}$
$-\frac{28}{28} 14 \times 2$
$-\frac{28}{0} 14 \times 2$
134

Autumn's start for $462 \div 6$:
$462 \div 6$
$6 \times 10=60$
$6 \times 60=360$

Matt's work for $7,008 \div 15$:

Alaina's work for $675 \div 7$:

$$
\begin{aligned}
& 7 \times 10=70 \\
& 7 \times 50=350 \\
& 7 \times 90=630
\end{aligned}
$$

Mika's start for $625 \div 75$:
$625 \div 75$

