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Unpacking the Practice: Anticipating Student 
Responses in Problem Solving
What is involved in anticipating students’ responses? This practice involves getting inside the problem 
(thinking about how you and others might solve the task), planning to respond to students using 
assessing and advancing questions, and preparing to notice key aspects of students’ thinking in the midst 
of instruction. The figure below highlights the key components of this practice.

Figure 3.1  •  Key questions that support the process of anticipating  
students’ responses

WHAT IT TAKES KEY QUESTIONS

Getting inside the problem

How do you solve the task?

How might students 
approach the task?

What challenges might students 
face as they solve the task?

Planning to respond to 
student thinking

What assessing questions will you 
ask to draw out student thinking?

What advancing questions 
will help you move student 
thinking forward?

Planning to notice student thinking
What strategies do you want to be 
on the lookout for as students work 
on the task?

Getting Inside the Problem
The first step is to get inside the problem! Many teachers find it useful to start by thinking about their own 
approach. How do you solve the task? You will want to think generally about the approach you use and 
at a detailed level about steps in your process (which may be different from someone else). Next consider 
how others might approach the task. You might investigate the problem using a different representation 
or think about how manipulatives might shape the way students explore the task. Do some approaches 
move students more easily toward the learning goals you established? You could also think about whether 
the task has different entry points. Often when students begin a task by working on different parts of the 
problem, their solutions look different (Lambert & Stylianou, 2013). Finally, as you explore these various 
approaches, keep in mind any challenges you think students will face as they solve the task. Are certain 
parts of the task likely to be difficult for students? Do you expect that students who use certain approaches 
will face particular kinds of challenges? Where do you think students might get stuck?
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The State Fair task

The State Fair
You are going to the Kentucky State Fair in August. You are trying to figure out how much you should plan to spend. The graph below 
shows how much three different people spent after going through the main gate and then buying their ride tickets. Every ride ticket is the 
same price.

Number of tickets purchased

Money spent at the Kentucky State Fair
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1. After entering the fair, you decide to buy four ride tickets. What will be your total cost for attending the fair? How do you know?

2. Describe how the cost increases as you buy more tickets. Be specific.

3. After entering the fair, you decide you want to go on a lot of rides. What will be the total cost for attending the fair and then purchasing 
15 ride tickets?

4. Write a description, in words or numbers and symbols, that can be used to find the total cost after entering the fair and purchasing any 
number of tickets.

5. How does the ticket price appear in your description or expressions?

6. How does the ticket price appear in the graph?

Extension
1. If you went to the Kentucky State Fair, how many ride tickets could you buy with $25.00?

2. If you could enter the Kentucky State Fair for free, how would the graph look different?

Source: Jennifer Mossotti. Ferris wheel photo by Hannah Morgan on Unsplash.

Analyzing the Work of Teaching 3.1
Getting Inside a Problem

Solve the State Fair task in at least two different ways. Then consider:

• What did you need to know to solve the task?

• What do you think might be challenging for students about this task?
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Getting Inside a Problem—Analysis

While there are several ways you might approach this problem, we will explore two possible methods 
here: connecting the points and finding the slope. In connecting the three given points, you would note 
that they all fall on the same line, and that the line intersects the y-axis at (0, $8.00). This could lead you 
to conclude that it costs $8.00 to enter the fair. By comparing the two points (0, $8) and (1, $8.50) you 
can see that it costs 50¢ per ticket and that the equation for the line contain these four points would be  
c = .50t + $8.00. You can then use the equation to find the cost of 4 tickets.

Alternatively you could take any two of the three given points and determine the slope of the line that 

contains these two points by using the slope formula, = −

−
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. For example, if you use (1, $8.50) 

and (8, $12.00) you would get −

−
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, so m would be .50 or 50¢. You could then use the slope-

intercept form of a line (y = mx + b) and substitute .50 for m and one of the three points for x and y in 
order to find  b. This would result in the equation y = .50x + 8. You can then use the equation to find the 
cost of 4 tickets.

In order to use the first strategy (connecting the points), you would need to know that if all the points 
lay on a line you can represent the line with the equation y = mx + b; that a line can be extended in either 
direction and the value of the point where the line intersects the y-axis is of the form (0, y); that if the 
difference in the x-values is one the difference in the y-values is the rate of change; and that m is the rate 
of change and b in the y-value of the y intercept in the equation y = mx + b. In order to use the second 
strategy (finding the slope) you would need to know the points all fall on the same line; the formula 
for slope; and the slope-intercept form of a line. In both of these solutions, you need to know a fair 
amount of algebra!

Middle school students may be challenged by this task because they don’t yet have a solid foundation in 
algebra that would give them access to the same methods we might gravitate to. For example, they may 
not realize that the y-intercept can be something other than (0, 0) and that it has meaning in this context. 
They may not recognize that there is a constant rate of change since the points given are not consecutive. 
They also may not realize that the three given points do not represent all the options for buying tickets. 

Through collaboration with colleagues, Mrs. Mossotti identified several possible methods for solving 
the task (see Figure below) that went beyond how she might have solved the task herself. Based on using 
a similar task last year, she expected to see some students create a table using the three points from 
the graph (1, $8.50), (8, $12.00) and (10, $13.00) without knowing what to do next (Solution A). Mrs. 
Mossotti suspected that the idea of the entrance fee could be “an issue for a lot of students.” As she 
explained, “I think when they look at, for example, 8 and 12, they might think that 12 is the cost for 
8 tickets without actually reading the y-axis to realize that it’s the amount that they’ve spent total.” In fact, 
she mentioned that some students might try to divide the cost by the number of tickets to find the cost 
per ticket, noting “this would not be correct at all, because they’re going to find three different rates for 
tickets” (Solution B). 

Mrs. Mossotti also described a few other ways that students might determine the price per ticket. In one 
approach, students would recognize that if 8 tickets cost $12.00 and 10 tickets cost $13.00 that two tickets 
must cost $1.00 (Solution C). Mrs. Mossotti also suggested that, “some of them are going to use the fact 
that the graph looks like a line and connect the points and then go from there to start to figure out the 
price for each ticket.” She anticipated that the y-intercept at (0, $8.00) would be particularly notable 
for some students, suggesting to them that the cost of 0 tickets was $8.00, and that 1 ticket was $0.50 
(Solution D). Mrs. Mossotti predicted that other students might use the information given to determine 
the total cost for a different number of tickets, noticing the relationship between the three given points 
(Solution E). Throughout this process, Mrs. Mossotti and her colleagues considered in detail the different 
ways her students might approach the State Fair task and also the reasoning underlying the students’ ideas.

TEACHING 
TAKEAWAY
Exploring the ways you 
would solve the task 
is just the first step in 
anticipating! Leverage 
colleagues and prior 
student work to anticipate 
the various entry-points 
and strategies your 
students might use.
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Figure 3.2  •  Anticipated solutions to the State Fair Task generated by Mrs. Mossotti and her colleagues

A. Make a table with values from the graph

Number  
of Tickets

Total  
Spent

1 $8.50

8 $12.00

10 $13.00

Student creates a table using the information about the three points 
on the graph.

B. Determine different unit rates for tickets prices

= 8.50 = 1.5 = 1.38.50

1

12

8

13

10

Student divides the total spent by the ticket quantity for each point 
on the graph and comes up with three different “unit rates.”

C. Determine the price per two tickets

Student uses the points (8, 12) and (10, 13) to determine that two 
tickets have a cost of $1.00.

D. Connect three points with a line to determine entry fee and 
ticket price.

Student connects the three points on the graph with a line and sees 
that at the y-axis the value is $8.00 and determines that it must cost 
$8.00 to enter the fair without buying any tickets. Since it costs $8.50 
for 1 ticket, this means it must cost 50¢ per ticket. Student sees that 
the line rises half a unit on the y-axis for every 1 unit on the x-axis.

E. Determine price per ticket at 50¢

Number 
of Tickets

Total  
Spent

0 $8.00

1 $8.50

2 $9.00

3 $9.50

4 $10.00

5 $10.50

6 $11.00

7 $11.50

8 $12.00

9 $12.50

10 $13.00

Student determines that the total amount spent is calculated by 
taking $8.00 and then repeatedly adding 50¢ depending on the 
number of tickets purchased.
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