
Chapter I
What is

Mathematical Investigation?

Participants will need time to read the introductory paragraphs
about the nature of mathematics and the rationale for investi-
gation in the curriculum. Depending on the needs and interests
of the group, they may feel a need to discuss these issues, but
the section is quite full, and if the group has opportunities to
talk outside the class, it may be best to get on with the work
that these paragraphs introduce.

Here are some of the major ideas behind the module. Some
may remain abstract and unclear until you have gone through
the module. Though all should make sense after the module,
not all are made explicit in the module.

• Being good at investigating is, in itself, a great asset in many
and diverse fields: science, journalism, auto repair, medical
diagnosis, history, law enforcement, and so on. It can be a
useful tool in solving problems.

• Investigation in any arena—whether it is mathematics or
any other field—involves looking deeply into the problem as
it is presented, noticing which parts of the problem matter
are central and which parts seem variable, extraneous, or of
lesser importance. It requires paying attention also to what
is assumed but not stated.

• Investigation also involves looking beyond the problem as it
is presented. Truly thorough investigations involve what-ifs,
what-if-nots, sub-problems, and side trips. A good investi-
gator looks for problems and, in the pursuit of the problem
at hand, may pose related new problems.

• One way to pose related new problems is to take the defining
characteristics of the given problem and systematically vary
them. By investigating what happens as the features of
a problem are changed, one can get a good sense of the
role played by each of those features. In science, this is
simply called good experimenting—changing one feature in
systematic ways while holding other features constant.
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• Systematic experiments yield patterns. In mathematics, one
conjectures that such patterns hold beyond the cases inves-
tigated, and tries to prove that they do. A complete math-
ematical investigation requires at least three steps: finding
a pattern or other conjecture, seeking the logical intercon-
nections that constitute proof, and organizing the results in
a way that can be presented coherently.

• In the kinds of mathematics encountered before college, vir-Proof in mathematics beyond
high school is not always so
generous. Non-constructive
proofs may provide assurance
without yielding much insight
into why things are as they
are.

tually all proofs provide much more than reassurance—the
way they reassure is by showing why things are true, how
they work.

• Because proofs involve assembling logically connected ideas
in particular ways, sometimes the investigation of connected
problems helps lead to proofs that might otherwise be elu-
sive.

• Not all problems that can be posed are worthy of attention.
Because one cannot follow every path that presents itself,
one must make decisions about which problems to ignore
and which to follow up; often one must make those decisions
just on the basis of the features of the problem, before any
investigative time is spent.

This module does not try to extend a participant’s knowledge in
any particular topic in mathematics, like conic sections, or fac-
toring trinomials, or trigonometric functions. It is about a way
of analyzing problems, creatively posing problems, and proving
conjectures.

The suggestions for the amount of time to spend on each prob-

lem give you a lot of freedom to explore (if you have a 2-hour

class or workshop). We recommend taking 10–15 minutes or so

for sharing among participants, especially following problems

1, 3, and 5. If there’s still time, encourage participants to be-

gin considering how they might justify the conjectures they’ve

made. This is the goal of section 2, but it might prove useful to

begin thinking about these issues ahead of time.
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1. Problem solving and problem posing

Problems presented in the text

Problem 1 (10–15 minutes) The Consecutive Sum
Problem: Which counting
numbers can be expressed as
the sum of two or more
consecutive counting
numbers?

Goal: To get enough of a preliminary sense of this problem to
know how it might be modified by problem posing.

In the deliberately small amount of time allowed—just 10 to
15 minutes—nobody should expect to “solve” this problem, but
adults typically come up with several initial conjectures. We
just want to get them started thinking about the problem and its
contexts. They’ll be asked to analyze their conjectures in section
2. If you read ahead to section 2, you’ll see that the “answer”

sum series
2
3 1 + 2
4
5 2 + 3
6 1 + 2 + 3
7 3 + 4
8
9 4 + 5
...

...

Table 1

is that counting numbers which are expressible as the sum of
consecutive counting numbers are precisely those which are not
powers of 2. Please do not “force” this conjecture out of the
participants—it will occur to them soon enough. Some of the
more common conjectures appear on the Further Exploration
CD.

The task in problem 1 has a familiar enough structure to en-

series sum
1 + 2 3
2 + 3 5
3 + 4 7
4 + 5 9

...
...

1 + 2 + 3 6
2 + 3 + 4 9
3 + 4 + 5 12
4 + 5 + 6 15

...
...

Table 2

gage participants without much help or intervention from you.
Problem 2 (below), by contrast, is generally quite unfamiliar,
and participants may need help getting started.

To prepare yourself to help out with problem 2, notice that
each of these tables represents a different way of looking at the
problem—posing different sub-problems.

Tables 1 and 3 (in the margin) represent the least variance from
the original problem. If you want to know which numbers you
can make, list them (in order) and try (Table 1). The pattern,
if it continues, already suggests that powers of 2 won’t work.

Alternatively, one can list all possible sums (Table 3) and see

high series sum
2 1 + 2 3
3 1 + 2 + 3 6

2 + 3 5
4 1 + 2 + 3 + 4 10

2 + 3 + 4 9
3 + 4 7

5 1 + 2 + 3 + 4 + 5 15
2 + 3 + 4 + 5 14

3 + 4 + 5 12
4 + 5 9

6
...

...

Table 3

what numbers they produce. Despite the systematic organi-
zation of this table, patterns don’t stand out readily, but the
fact that some numbers can be made in more than one way is
sometimes more apparent from this table than with Table 1.

Table 2 is, in effect, an implicit posing of a new set of sub-
problems: “What numbers can (can’t) I express as sums of ex-
actly two counting numbers?” Or three. Or four . It restricts
a previously unrestricted feature of the problem (“two or more
consecutive counting numbers”).
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Problem 2 (10–15 minutes)Problem: List three more
features of problem 1. Goal: To pose new problems, related to the original, that

might shed light on the original or the landscape within which
the original lies. Participants are not likely to have thought this
way about problems. People often tend to ignore what seems
“obvious,” like the fact that the problem is about sums , which
is why that one is given to them and why feature e (“no other
restrictions”) is given later. You may still have to help them
not to ignore what seems too obvious to them.

Problem 1 has at least five essential features.

a. It is about a sum.

b. The sum contains two or more addends.

c. The addends must be counting numbers .

d. They must be consecutive.

e. There are restrictions that the problem could make, but doesThe familiar idea of “looking
for special cases” is really a
matter of noticing what
restrictions the problem does
not make, and adding them.

not . The fact that it fails to make more restrictions is part
of what makes it this problem and not another.

Problem 3 asks participants to modify the original problem by
altering one or more of these essential features. So that par-
ticipants have a chance to explore before being given specific
suggestions for changes, the Ways to think about it suggestions
are placed later at the end of the corresponding section in the
main text. But you need to be aware of these suggestions now
in order to systematize the kinds of changes they might choose
to make.

Ways to think about it:

i. Make a feature more restrictive: If the problem isThis is sometimes referred to
as finding special cases. about triangles, restrict it to right (or scalene or . . . ) tri-

angles. If the problem uses a calculation that involves two
or more numbers, restrict it to exactly two (or three or
. . . ).

ii. Relax a feature: If the problem is about right trian-This is sometimes referred to
as generalizing, or extending
the domain.

gles, see what happens to the problem when you allow all
kinds of triangles, or maybe all polygons. If the problem
specifies one set of numbers (e.g., {1, 2, 3, . . . }), see what
happens when you allow all numbers to be used.

iii. Alter the details of a feature: If the problem isThese modifications may
change the domain of a
problem or alter a parameter.

about right triangles, see what happens to the problem
when you use some other kind of triangle. If the problem
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specifies one set of numbers (e.g., {1, 2, 3, . . . }), see what
happens when you pose the problem with a different set of
numbers, like {1, 3, 5, 7, . . . } or {0, 3, 6, 9, 12, . . . } or
{0.5, 1, 1.5, 2, 2.5, . . . }. If the problem specifies particular
arithmetic operations, see what happens if you systemati-
cally alter them (e.g., substituting + and − for × and ÷
or vice versa), and if it specifies equality, see what happens
if you require a specific inequality (e.g., >).

iv. Check for uniqueness: If a problem asks only if some- Asking “How many ways can
this be done?” is often
productive.

thing can be done, ask if it can be done in only one way.

Major goal: A goal of the entire first two sections is for par- Homework: If your group
does projects outside of
workshop time, you might
have them pick among the
problems and investigate one
or more of them in depth.
Problem 3 gives some of the
variants, and problem 4
outlines some of the territory
to which these new variants
lead.

ticipants to see that pursuing the problem in depth—ferreting
out its relatives and exploring them—is much richer than the
original problem seems. Seeing the interconnectedness of math-
ematical results is essential to “understanding” mathematics.

Problem 3 (15 minutes) Problem: Brainstorm to see
what related problems evolve
from this one as you change
the features one (or at most
two) at a time.

The following new problems all have interesting consequences
related to the mathematics of grades 6–12. Solutions to these
problems involve primes, odds, multiples of odds, factoring and
the counting of certain factors, square numbers and the differ-
ence of squares a2 − b2, triangular numbers (n(n+1)

2
) and the

difference of triangular numbers, powers of 2, Pascal’s Triangle,
factorials, permutation numbers, and more.

The following discussion is identical to one that appears in the
solutions on the Further Exploration CD, but we reproduce it
here to assist the facilitation of this problem.

i. Make a feature (like b) more restrictive: Which Experiments like Table 2 are,
in effect, playing with this
restriction.

counting numbers can be expressed as the sum of exactly
2 consecutive counting numbers? Exactly 3? Exactly n?

ii. Relax a feature: For example, relax feature c, which
specifies counting numbers as the domain. Instead, you
could open the problem to all integers.

iii. Alter the details of a feature: The original problem
requires consecutive counting numbers. What would hap-
pen if you chose consecutive odd numbers, such as 15 =
3 + 5 + 7? Also, the problem does not restrict the starting
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point of each sum. What about requiring that the consec-
utive sums (or consecutive odd sums) start with 1? For
example, look at the sums 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4,
. . . , or 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, . . . . Altering details
can even apply to the operation (feature a). What about
consecutive products instead of consecutive sums? (Then
re-consider all the previous variations!)

iv. Check for uniqueness: Are any numbers expressible
as consecutive sums in more than one way? If so, is there a
recognizable feature of those that can be expressed exactly
one way? Two ways? Three ways? n ways?

Each problem listed above offers something of real interest, but
it is also possible to create problems that seem not to hold much
promise, at least without adding enormous complexity. “Un-
interesting” problems can be the result of changing too many
features at once, or may result from making choices that seem
foreign to the original context, or too arbitrary. Of course, some
problems that look uninteresting may actually lead to deep re-
sults, but classroom time is not unlimited and one must often
make decisions without first investigating deeply.

Here is a small list of kinds of problems that are occasionally
suggested in workshops, but that seem less promising. Some are
accompanied by reasons why they are poor bets.

v. Restrict b: Which counting numbers can be expressedThis could be answered as
part of problem i . By itself, it
is too arbitrary.

as the sum of exactly 100 consecutive counting numbers?

vi. Alter b, c: Which numbers can be expressed as the
Too many changes. Change
too arbitrary. sum of exactly 5 consecutive odd numbers?

vii. Change domain: Instead of using all natural num-Primes are scattered too
irregularly for “consecutive
primes” to feel promising.
Adding, in the context of
primes, also makes the
mathematics hard. In
elementary mathematics,
primes are multiplied, not
added, to produce results.

bers, explore which numbers can be written as the sum of
consecutive prime numbers (for example, 15 = 3 + 5 + 7,
or 10 = 2 + 3 + 5).

viii. Restrict the problem a different way: Consider
only consecutive sums (or consecutive even sums) starting
with 8.

ix. Alter the operation (change feature a): Consider
consecutive differences instead of consecutive sums, like
(((5− 6)− 7)− 8)− 9.

x. Alter features a , b, c: Which numbers can be ex-The result is mildly
interesting, but the problem is
so narrow that there’s not
much to find.

pressed as the difference of exactly two consecutive num-
bers from the set {1

2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, . . . }?
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Some problems are hard to judge in advance. Here are three.

xi. Change domain: Which counting numbers can be ex-
pressed as the sum of consecutive numbers from the set
{1

3
, 2

3
, 3

3
, 4

3
, 5

3
, 6

3
, . . . }?

xii. Change domain: Which numbers can be expressed
as sums of consecutive square numbers?

xiii. Change domain: Which numbers can be expressed
as the sum of consecutive unit fractions {1

2
, 1

3
, 1

4
, 1

5
, 1

6
, . . . }?

Problem 4 (10–15 minutes) Problem: Pick one or more
of the problems you created in
problem 3 and explore them
just long enough to build
some preliminary conjectures.

We provide a detailed look at some possible conjectures in the
Further Exploration CD, but do not include them here. Encour-
age participants to pick a “favorite” or “interesting” problem to
work on (their choice).

Problem 5 (15 minutes) Problem: Apply these and
your own rules to generate
interesting variants on the
following problem:
“How many triangles with
perimeter 12 and integer side
lengths can you construct?”

Participants should now be more comfortable with the idea of
describing, then altering, the features of a problem. They should
start by listing the features (a la problem 2), then systematically
alter any—or all—of them.

Problem 6 (15 minutes) Problem: Now, go back to
the consecutive sums problem.
Look over the list of features
you made for problem 2 and
see if applying these rules to
each of the features gives you
any new problems.

This encourages participants to see that this process can be
never-ending. The more we look at a problem or concept, the
better we understand it and are able to “deconstruct” it further.
This might also provide them with time to continue to consider
how they might prove the general conjecture, since one approach
is to consider separate, special, cases first.
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2. You’ve got a conjecture—now what?

In the first section, participants investigated a rich problem
about consecutive sums and explored ways to modify it and
to pose new related problems. They also discussed why it is
important to explore a problem beyond its solution. In this
section, you’ll continue this discussion. First, you’ll investigate
some important—and not so important—connections to which
these modified problems lead. Second, you’ll solve the modified
problems, which will lead you to an explanation and proof of
the main result (of the original consecutive sums problem).

Problems presented in the text

Problems 1-5 (15–20 minutes)Problem: Here are several
pairs of variations on the
original consecutive sums
problem. Look at each pair,
and try to decide, without
first pursuing the problems,
which choice seems more
likely to lead somewhere.

Goal: To develop participants’ intuition—and some helpful
rules of thumb—about which problems are more worthy of pur-
suit than others.

Get participants to discuss these questions within their groups.
Remember that they’re not being asked to prove these state-
ments, they’re being asked to determine which of each pair
seems most likely to lead somewhere. Have the whole group
share strategies and “rules of thumb.” But don’t let the time
get away from you—you need to be sure there’s enough time to
get to problem 20.

Problem 6 (10 minutes)Problem: How did you make
your decision in each of the
previous problems? What
“rules of thumb” did you use
to help distinguish between
problems that are probably
good and ones that are
probably not worthwhile?

This will be an excellent opportunity for group sharing and com-
paring. How do participants think about these problems? Is
there agreement on each one, or is there an argument (of the
intellectual variety)? This reflection activity, thinking about
thinking, can be very helpful in focusing our efforts.

Problem 7 (20–25 minutes)Consecutive Sum
Jeopardy: In your
investigation of the
Consecutive Sums Problem,
what questions (if any) have
you run across which have the
following sets of numbers as
answers or partial answers?

Goal: In the concrete terms of classroom topics, here mostly
expressed as sets of numbers, participants get to see where the
variations on the original problem lead.

Investigations of the sisters, cousins, and aunts of the Con-
secutive Sums Problem produce many sets of numbers as
answers or partial answers. You may divide subproblems among
the groups. Give each group a subset of 3-4 answers to deter-
mine for what problems they are answers. Have groups share
their findings with the whole class at the end of this activity.
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Problems 8–20 (50–60 minutes) Problems 8–20: Find a
proof or counterexample (an
example that shows the
statement is not always true)
for each one of the following
problems. These 13 problems
form a path to a conclusion,
so try to justify each
statement.

Goals: One goal is to encounter and practice explanatory
proof in this non-geometric domain. Another is to see how these
proofs build on each other to answer and explain the original
consecutive sums problem.

It’s hard to fight the urge to divide these problems among the
groups, then have groups share their proofs with the rest of the
class. However, the results and the proofs lead to the proof of
problem 20, which is the main problem of this section, after all.
Have teachers discuss how the preliminary problems assisted
them in proving the original problem. If there’s not enough
time, take this up again during section 3—it’s important! For
hints on individual proofs, see the Ways to think about it section
in the text or the solutions on the Further Exploration CD.

Possibly more important than any of these particular results is
the idea that the sum of any number of consecutive counting
numbers is the product of the number of terms being added and
the mean of the first and last addends. Most of the participants
will already be familiar with this idea, since it’s the crux of

Gauss’s famous boyhood proof that
n∑

k=1
k = n(n+1)

2
. In fact, this The story of Gauss’s proof,

while possibly apocryphal, is
an integral part of
mathematical lore. A version
of the story appears in
William Dunham’s Journey
Through Tenius: The Great
Theorems of Mathematics
(published by Penguin USA).

is true not only of the sum of consecutive counting numbers, but
also the sum of consecutive terms in any arithmetic sequence.
Participants will be asked to investigate this generalization in
the Further Exploration materials.

If there’s time, it would be very productive to take a few min-
utes to write out the complete proof of the Consecutive Sums
Problem (they will have all the pieces, but they’re spread out
over the preliminary problems). If there’s not time, take time
at the beginning of section 3 or assign it as homework, if appro-
priate.

Problem 21 (10 minutes) Problem: For each
conjecture that you
determined not to be true in
problems 8–19, see if you can
guess what correct, but
incomplete, observations
might have led to that
conjecture.

As in the other problems, the ideas of your participants will
likely be varied. Encourage discussion and collegial critique
rather than consensus.

For homework, participants could look at the variants of proof
for a single formula for the sum of the first n numbers. Section
4 starts with the discussion of these various proofs.
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3. Do it yourself

During the first two sections, participants were involved in the
investigation of a problem and also worked on problem pos-
ing and proof. This section asks participants to perform in-
vestigations of two more problems on their own, repeating the
procedures of the previous sections: analyzing and altering the
original problem in order to pose further problems and gain a
deeper understanding of its context.

Problems presented in the text

Goal: Participants practice problem-posing techniques, ap-The Post Office Problem
A particularly quirky post
office clerk sells only 7-cent
stamps and 9-cent stamps.
Can exactly 32-cents’ worth
of postage be made using
these stamps? Can 33 cents
be made? Which amounts, if
any, cannot be made?

The Pythagorean
Theorem: This theorem,
central to an enormous
amount of mathematics, can
be thought of as a statement
about shapes. “The (area of
the) square on the hypotenuse
of a right triangle is equal to
the sum of the (areas of the)
squares on the two legs of that
triangle.” Alternatively, it
can be thought of
algebraically, as a much more
generic statement about the
way some numbers are
related. “The sum of two
squares is equal to another
square,” is often written
a2 + b2 = c2.

plying them to new problem situations. They should realize
that these are general techniques, useful for many problem sit-
uations, and that problem posing is a piece of mathematical
creativity that is often also helpful in problem solving .

These two situations have been selected for practice because
they are, themselves, quite rich and because their variants can
therefore also be expected to be of value. The Pythagorean
Theorem is, of course, ubiquitous. The post office problem is
beginning to appear, in various forms, in many curricula. You
could give these two problems to different groups of teachers,
because they might not be able to finish both of the problems
during the session. Try to leave time for presentations and dis-
cussion.

So, should you require all participants to work on both prob-
lems, or should you ask them to pick one and spend the session
working on it? Or should you ask them to spend 10 minutes on
each problem and decide which one they want to pursue? It’s
up to you, depending on the experiences and needs of your par-
ticipants and the particular circumstances in which you meet
them. In fact, you may want to stretch this session into two
by including work on the justification of the solution one—or
both—of these problems and/or their cousins.

No matter how you decide to work on these materials, it is
essential that participants be given ample opportunity to talk
with each other while working on the problem and share their
work with you and the rest of the group.

Be sure to refer to the Further Exploration materials for possible
directions participants might take while analyzing and altering
these problems.
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4. You know the answer? Prove it.

Previous sections asked participants to consider a variety of
problem-solving and problem-posing situations, with some proofs
thrown in for good measure. This section continues with the im-
portant theme of mathematical justification, requiring teachers
to carefully read, correct (if necessary), and then alter a set of
different proofs of the same fact:

For all counting numbers n,
n∑

k=1
k = n(n+1)

2
.

Problems presented in the text

Problem 1 (20–30 minutes for each proof) Problem: As you read each
alleged proof, do the following:

(a) Decide whether the
argument is a genuine,
acceptable proof. If you feel it
is not, fix it.

(b) Rewrite the argument to
make it fit a conjecture about
the sums of consecutive odd
numbers starting at 1.

(c) What if the numbers were
not consecutive counting
numbers but, say, consecutive
multiples of 3, or not starting
at 1, or . . .

You might find it useful to divide up the proofs among groups
of teachers and then have them make presentations to the whole
class or workshop. The specific make-up of the teachers (pre-
service or inservice, level of experience with proof or advanced
mathematics) plays a big role in how to proceed. If they are
not familiar with formal proof or haven’t had to think about
such issues in a long time, you might decide to focus on fewer
parts (among i–iv), concentrating on depth rather than breadth.
Alternatively, you could forego part (b) and/or part (c) on in-
dividual proofs.

Sometimes, there is a lot of rewriting necessary when proving al-
ternate conjectures (parts (b) and (c)), and other times, there’s
not. On some occasions, the given proof method is not obvi-
ously adaptable (for example, you might be hard pressed to use
the method of proof i, considering odd and even cases, to prove
a formula for the sum of odd counting numbers).

Problem 2 (remaining time or later class) Problem: You have
generated many problems and
partial or complete results to
some of them (in this session,
as well as earlier ones). Pick
one, or a group of closely
related ones, and organize a
presentation of your work.

The particular format of the presentations is, of course, up to
you. If possible, give participants additional time to work to-
gether on their problems and the planning of their presentations,
then have them present their results to the class at a future
meeting.
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5. Discerning what is, predicting what might be

This section might, at first glance, seem unrelated to the previ-
ous sections, but statistical investigation is an important aspect
of mathematical problem solving. As it is a very different “habit
of mind” from typical problem solving, it is worth spending time
on its development. As participants learn in this section, the
method chosen to display data is a significant one. While it
may be true “the data don’t lie,” it’s certainly even more true
that the choice of data presentation can affect the interpretation
by the data “consumer.” Therefore, all teachers and students
must be aware of the effect presentation plays on our interpre-
tation of data.

Problems presented in the text

Problem 1 (15 minutes)Problem: Work through
problem A. Also, decide
i. which items seem to require
little more than using
definitions and procedures;
ii. which items require some
judgment as well;
iii. which items are
ambiguous or meaningless.

Problem A is copied below for your convenience:

A. To help decide what kinds of items to keep in stock, a store kept
track of the ages of its customers. This stem-and-leaf plot shows
the data for one 15-minute period.

3 3 4 8 9
2 5 8 8 8 8 8 9 9 9
1 0 1 1 1 2 2 3 4 4
0 6 7 8

(1) How many people entered the store during that 15 minutes?
(2) Which is the most common age group?
(3) Five customers were the same age. How old were they?
(4) Is 25 a typical age for a customer?

Don’t have teachers spend more than about 5 minutes on these,
unless participants are unfamiliar with stem-and-leaf plots. Use
the bulk of the time to share and compare solutions. Some
participants might not see the ambiguity inherent in certain
questions, thinking, “I know what they mean.” It’s worth taking
time to consider these preconceptions. After all, while everyone
might “know what they mean,” that meaning may very well be
different from one individual to the next.

Problem 2 (5 minutes)Problem: Plot the data as
histograms in the two specified
ways.

This shouldn’t take very long; the discussion concerning inter-
pretation of what is seen in the two tables is part of problem 3.
You might even want to complete these tables as a whole class
by having a participant fill out the tables on an overhead. Be
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sure that participants are careful—you don’t want the misrep-
resentation of data to result from haphazard data recording.

Problem 3 (10 minutes) Problem: What patterns of
customer ages are “revealed”
in these two histograms, and
what inference might you
draw about the clientele of the
store based on each pattern?
Which corresponds to the
stem-and-leaf plot? What, if
anything, about the data
might you use to help decide
which pattern better reflects
the truth about the store’s
customers?

Encourage teachers to realize these tables illustrate the fact that
the choices made in displaying the data can greatly affect the
interpretation of the data. The statement, “The data speak for
themselves” is very misleading, not to mention untrue!

As part of the analysis for this problem, ask teachers to check
to see whether any of their solutions to problem 1 would change
with the second table. Have them focus on the most common
age group if they have trouble getting anywhere.

Problem 4 (15 minutes or less) Problem: The box contains
another problematic problem.
Again, as you work through
it, decide
i. which items seem to require
nothing more than definitions
and procedures;
ii. which items require some
judgment as well;
iii. which items are
ambiguous or meaningless.

Problem B is copied below for your convenience:

B. Students recorded their weights to the nearest pound as they
tried out for the school’s track team. This is the full list: 138, 103,
135, 115, 143, 105, 112, 115, 125, 150, 125, 120, 101, 152, 149, 152,
137, 114, 119, 128, 125, 104, 110, 108, 144, 115, 144, 125, 133, 136,
144, 117, 125, 132.
(1) Make a stem-and-leaf plot to display these weights.
(2) Find the mean, median, mode, and range of these data.
(3) Describe a pattern you see in the data.

Quick “accuracy check”: be sure that everyone has 34 data
points.

Problem 5 (5–10 minutes) Problem: After working
through all parts of problems
B and 4, make histograms in
the two ways called for.

Be sure that participants realize the histograms are horizontal,
rather than vertical.

Problems 6-7 (15 minutes) Problem: What do the
histograms “reveal” about the
data?
Problem: What do the
histograms reveal about
histograms?

Most observations will mirror those in problem 3, but take time
to see whether anything new comes up. Be sure that at least
part of the discussion focuses on the fact that the display choices
affect the message received.

Problems 8–10 (15–20 minutes)
In problem 8, teachers will recognize that the varied parameter Problem: Problem 5 asked

you to make two histograms.
A change in one parameter
distinguished the two
histograms. What was varied?

in previous histograms was the “location” of each interval (or
bin)—this might be expressed as the center of the interval or
as either the minimum (left endpoint) or the maximum (right
endpoint) value in the interval.
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Have participants imagine “extreme” cases in problem 9. ForProblem: Experiment with
interval width in your head.
When you change this
parameter, how does it affect
the visual pattern you see?

instance, the narrowest possible interval that would make sense
would have width 1, while the widest width could be 52 (en-
compassing everything from 101 to 152).

In problem 10, the “right” interval width is unknowable, in gen-Problem: Is there a way to
determine the “right” interval
width for a particular data
set?

eral. However, a case could be made for interval width 1, since
then there is no “clumping,” and therefore, it might give rise
to the least amount of misconception. Determining the “right”
interval width for a particular data set is not a mathematical
process: There is no mathematical reason to support any one
choice over any other. The “right” choice is in the eye of the
beholder—an interpretive choice that is subject (like much of
statistical argumentation) to debate by others who hold a dif-
ferent point of view.

Problem 11 (5–10 minutes)Problem: Here are three
ways a student might think
about the request to “find the
mode” in problem B2. Each
answer is based on a different
interpretation of “find the
mode.” What interpretation
leads to each answer? What
is correct about each
interpretation?
(a) The mode is 125.
(b) The mode is 110 to 119.
(c) People’s actual weights
can’t have a mode.

Encourage participants to come up with valid, or at least rea-
sonable, rationales for each response—perhaps it will help to
repeat the maxim, “Incorrect answers are often the correct an-
swer to a different question.” Have them look for what is correct
about each answer.

Of course, part (a) gives the standard response, since 125 is the
most common weight listed in the data. Part (b) gives the most
represented decade, as exhibited in the stem-and-leaf plot, but
it might be reasonable to think of clumping some data together,
in general. Part (c) is probably most difficult to justify, but it’s
possible the student could be thinking about the fact that it’s
very unlikely that two people have exactly the same weight.

Problems 12–21 (as time allows)
It might not be possible for all participants to finish all of the
remaining problems within a two-hour time period. Perhaps
the problems could be divided up between groups of teachers,
who will present their solutions and lead discussions during a
subsequent class.

Problem 12Problem: Suppose that the
weights had been recorded to
the nearest tenth of a pound,
instead of to the nearest
pound. Further suppose that
the mean, median, mode, and
range were calculated with
these new, more accurate
data. By how much, at the
very most, could each of the
measures differ from the ones
computed with the
nearest-pound data?

This might be a good problem for a whole-group discussion.
Start with small groups, and have them share after discussing
the problem for a while.

Any of the weights could be rounded up or down by as much
as half a pound. For example, if someone’s actual weight, w,
satisfied 101.5 ≤ w < 102.5, it would have been recorded as 102
in the original list. There are some potential misconceptions
here. For instance, if someone’s weight is 101.45, their weight
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to the nearest tenth of a pound would be 101.5, but their weight
to the nearest pound is 101—not 102.

Therefore, the mean, median, and range could go up or down
by as much as a half pound (so the possible values lie within a
pound of each other), while the mode could change dramatically,
going as high as 149.5 (if the weights originally recorded as 149
and 150 could both be rounded to 149.5) and as low as 114.5 (if
the weights at 114 and 115 all rounded to 114.5).

Problems 13–21
See the hints in the Ways to think about it section of the text
or the solutions on the Further Exploration CD.


